Computing the Union Join and Subset Graph of Acyclic
Hypergraphs in Subquadratic Time

Arne Leitert



Hypergraph

Hypergraph
A hypergraph H = (V, &) is a set of vertices V and a family & (called hyperedges) of

subsets of V.

©

It is a generalisation of a graph; hyperedges can contain an arbitrary positive number of

vertices.
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Representation: Incidence Graph

Representation as bipartite graph 7 (H), called incidence graph.
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Representation: Incidence Matrix

Representation as binary matrix M(H), called incidence matrix.
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Acyclic Hypergraphs

Acyclic Hypergraph

A hypergraph H = (V, &) is acyclic if its hyperedges & form a tree T such that, for each
vertex v € V, the hyperedges containing v induce a subtree of T. T is called the join
tree of H.

Acyclicity can be checked in linear time (also computes T) [Tarjan, Yannak 1984].
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Acyclic Hypergraphs

Hierarchy (all subsets are proper subsets)

acyclic = a-acyclic

B-acyclic
y-acyclic interval

Applications

v

Relational Databases

Tree-Decompositions (e. g. Tree-Breadth, Tree-Width)

Atoms of graphs

Closely related to Chordal graphs and Dually Chordal graphs

vV VvV V

6/44



Subset Graph and Union Join Graph




Sperner Family Problem

Sperner Family Problem

Input: A family ¥ of sets.
Question: Does ¥ contains two distinct sets S; and S; such that S; € §;?
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Hardenss of Sperner Family Problem

Strong Exponential Time Hypothesis (SETH)

There is no algorithm that solves the Boolean satisfiability problem (without limiting
clause sizes) in O(2"¢) time for some ¢ > 0.
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Hardenss of Sperner Family Problem

Strong Exponential Time Hypothesis (SETH)

There is no algorithm that solves the Boolean satisfiability problem (without limiting
clause sizes) in 0(2"‘5) time for some ¢ > 0.

A chain of reductions then allows to state the following:

Theorem [Borassi, Crescenzi, Habib 2016]

If SETH is true, then there is no algorithm that solves the Sperner Family problem for
an arbitrary family F (i.e., for an arbitrary hypergraph) in O(N?~¢) time.

Note that all subfamilies Fs = {S”| S = "} can be determined in linear time.
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Subset Graph Problem

Subset Graph Problem

Input: A family ¥ = {S1,S,, ..., S} of sets.
Output: The subset graph G = (¥, E) with S;S; € Eifand only if S; € S; and i # j.
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Hardenss of Subset Graph Problem

Theorem [Borassi, Crescenzi, Habib 2016]

If SETH is true, then there is no algorithm to compute the subset graph of an arbitrary
hypergraph in O (N?~¢) time, even if the output is sparse.

Follows directly from hardness of Sperner Family Problem.

Theorem [Pritchard 1999]

There is an O(N?/log N)-time algorithm which computes the subset graph for a given
family of sets.
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Union Join Graph

Union Join Graph

The union join graph of an acyclic hypergraph is the union of all its join trees. That is,
for an acyclic hypergraph H = (V, &), the union join graph is a the graph G = (&, X)
with X = { E;E; | There exist a join tree for H with the edge E;E;. }.

-

[Berry, Simonet 2016] gave O(Nm)-time algorithm for acyclic hypergraphs.
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Hardness of Union Join Graph




Join Tree
» Can be computed in linear time.
> Question: Is it unique?
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Is Join Tree Unique?

Join Tree
» Can be computed in linear time.
> Question: Is it unique?

If SETH is true, then there is no algorithm that determines in O(N?~¢) time whether a
given acyclic hypergraph has a unique join tree.

Proof

» Linear-time reduction from Sperner Family Problem.
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Is Join Tree Unique? - Reduction

Reduction
> Given family ¥ = {51, Sz, ..., Sm}-

> Create hypergraph H = (V,&) with V = U Siand & =F U {V}.
SieF

Observation

> Thereis no pair S; C S; if and only if the join tree for H is unique.
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Implication for Union Join Graph

Observation
» Join tree for H is unique if and only if union join graph is a tree.

If SETH is true, then there is no algorithm that computes the union join graph of an
a-acyclic hypergraph in O(N*7¢) time.
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Union Join Graph via Subset Graph




Separator Hypergraph

Let T be join tree of H = (V, &) rooted in some hyperedge R.

Up-Separator S'(E;) of hyperedge E; is intersection with parent E;, i.e.,
S'(E;) = E; N E;.
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Separator Hypergraph
Separator Hypergraph S (H) for H is the hypergraph formed from the set

Es={S"(E:) | Ei € & E #R}.

-

X%
X%
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Separators and Union Join Graph

For any distinct E;, E; € &, the following are equivalent.
> H has ajoin tree T with the edge E;E;.
> T has a separator S on the path from E; to E; with S C S; and S C S;.
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Finding Union Join Graph

Algorithm
1. Compute subset graph G of separator hypergraph S(H)
2. For some S € S(H), use Ggs to find all hyperedges E; with S C S;.
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Finding Union Join Graph

Algorithm

3. Partition hyperedges based on which side of S in T they are.
(Determine if E is descendants of S or not in rooted tree, constant time after pre-
and post-order on tree.)

O O
O 'O
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Algorithm
4. Make all “left” hyperedges adjacent to all “right” hyperedges.
5. Repeatforall S € S(H).
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Finding Union Join Graph

The algorithm computes the union join graph G of a given acyclic hypergraph H in
O(Ta(H) + N +|G|) time where T (H) is the runtime of a given algorithm A with the
separator hypergraph of H as input.
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Finding Union Join Graph

Recall, subset graph can be computed in O(N?/log N) time. Therefore:

There is an algorithm that computes the union join graph G of an acyclic hypergraph
in O(N?/log N +|G|) time.
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B-Acyclic Hypergraphs




PB-Acyclic Hypergraphs

pB-Acyclic Hypergraph

A hypergraph H = (V, &) is f-acyclic if each & € & forms an acyclic hypergraph.

B-Acyclic Hypergraphs
> Closely related to Strongly Chordal graphs and Chordal Bipartite graphs.
> Also called Totally Balanced hypergraphs.
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Doubly Lexically Ordered Matrix

Doubly Lexically Ordered Matrix

A matrix is doubly lexically ordered if rows and columns are permuted in such a way
that row- and column-vectors are in non-decreasing lexicographic order. Priorities in
rows decrease from right to left and in columns from bottom to top.

E E
—
u o -
. .
o o)
u<vo
Ei<Ej

A doubly lexically ordering of vertices and hyperedges can be found in O(N log(n + m))
time (full matrix is not required) [Piage, Tarjan 1987].
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Finding Subset Graph

Preparation
» Find double lexicographical ordering of vertices and hyperedges.

Let o be the vertex highestin E;. Then, E; C E; ifand only if E; < E; and v € E.
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Finding Subset Graph

Approach

> [terate (backwards) over hyperedges of v until E; is found. E; is subset of all found
hyperedges.

> Runtime is number of edges in output created.
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Finding Subset Graph

There is an algorithm that computes the subset graph G of a given f-acyclic hypergraph
in O(Nlog(n + m) + |G|) time.
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Finding Union Join Graph

‘ If a hypergraph is f-acyclic, then its separator hypergraph is f-acyclic, too. \

Using the algorithm for general acyclic hypergraphs and for subset graphs of f-acyclic
hypergaphs then gives the following:

There is an algorithm that computes the union join graph G of a given f-acyclic hyper-
graph in O(N log(n + m) +|G|) time.
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y-Acyclic Hypergraphs




y-Acyclic Hypergraphs

y-Acyclic Hypergraph

A hypergraph is y-acyclic if, for all distinct hyperedges E; and E;,

S=E; NE;# (0 implies S separatesE;\E;fromE;\ E;.
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Finding Union Join Graph

For an acyclic hypergraph with join tree T, the following are equivalent:
> H has ajoin tree T with the edge E;E;.
» S=E NE;# 0andSseparates E; \ E; from E; \ E;.

Follows from definition of join trees.

The line graph L(H) = (&, &) of a hypergraph H = (V, &) is the intersection graph of
its hyperedges. That is,

8L = {EiEj | Ei,Ej (S S;El’ mEj * 0}
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Finding Union Join Graph

An acyclic hypergraph is y-acyclic if and only if its linegraph is isomorphic to its union
join graph.

There is an algorithm that computes the union join graph G of a given y-acyclic hyper-
graph in O(N +|GJ) time.
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Bachman Diagram

For H = (V, &), let X be the set of non-empty intersections X of subsets of &, i.e.,

x=] {%‘%=ﬂEea'E,£¢(D}
&'céE

Bachman Diagram

The Bachman diagram B(H) of H is a directed graph with the node set X such that
there is an edge from X to 9 if X > ¥ and thereisno 3 withX > 3 > 9.
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Bachman Diagram

Lemma [Fagin 1983]

A hypergraph is y-acyclic if and only if its Bachman diagram forms a tree.

% a,i,c—»b,lc
- ¢ ¢
ad cef
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Observation
> E; C E;ifand only if there is a path from E; to E; in B(H).

/’\\ /’\\
1 1 1
\ a ) \ c /
N ~_~
i i
I I
I I
b TTTA
I
|a,dI :Q&f:
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Finding Subset Graph

Algorithm Idea
» Compute a simplified Bachman diagram B for H in O(N) time.
> For each E;, determine all distinct E; such that there is path from E; to E; in B.
> Forall such E;, E;, add edge (E;, E;) to subset graph G.

There is an algorithm that computes the subset graph G of a given y-acyclic hypergraph
in O(N + |GJ) time.
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Interval Hypergraphs




Interval Hypergraphs

Interval Hypergraphs
An acyclic hypergraph is an interval hypergraph if it admits a join tree that forms a path.

E, E; Em Em

Recognition and computing order o = (E1, Es, . .., Ep,) in O(N) time [Habib et al. 2000].
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Interval Hypergraphs

¢(v) Index of right-most hyperedge containing v.
o(S) = misn ¢(v) (index of right-most hyperedge containing all of S;)
vES;

Si—l Ei Si Sj—l E] Sj
Lemma

Forall E;, Ej with i < j, E; € E; if and only if |E;| = |S;| and ¢(S;) > .

Symmetry allows to also determine all E; 2 E;.
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Interval Hypergraphs

There is an algorithm that computes the subset graph G of a given interval hypergraph
in O(N +|G|) time.

Using the algorithm from earlier:

There is an algorithm that computes the union join graph G of a given interval hyper-
graph in O(N +|GJ) time.
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Thank Youl!
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